从Linac Coohent Light Source(LCLS-II)和高级光子源升级(APS-U)等工具产生的数据中迅速提取可行的信息,由于高(最高(最高为TB/S)数据速率)变得越来越具有挑战性。常规的基于物理的信息检索方法很难快速检测有趣的事件,以便及时关注罕见事件或纠正错误。机器学习〜(ML)学习廉价替代分类器的方法是有希望的替代方法,但是当仪器或样品变化导致ML性能降解时可能会灾难性地失败。为了克服此类困难,我们提出了一个新的数据存储和ML模型培训体系结构,旨在组织大量的数据和模型,以便在检测到模型降解时,可以快速查询先验模型和/或数据。针对新条件进行了微调。我们表明,与当前最新的训练速度提高了200倍和92X端到端模型更新时间的速度相比,我们的方法最多可以达到100倍数据标记的速度。
translated by 谷歌翻译
在描述自然语言中的时空事件时,视频标题模型主要依赖于编码器的潜在视觉表示。 Encoder-Decoder模型的最新进展主要参加编码器特征,主要是与解码器的线性交互。然而,对视觉数据的日益增长的模型复杂性鼓励更明确的特征交互,用于微粒信息,目前在视频标题域中不存在。此外,特征聚合方法已经用于通过连接或使用线性层来揭示更丰富的视觉表示。虽然在某种程度上为视频进行了语义重叠的功能集,但这些方法导致客观不匹配和功能冗余。此外,字幕中的多样性是从几种有意义的角度表达一个事件的基本组成部分,目前缺少时间,即视频标题域。为此,我们提出了变化堆叠的本地注意网络(VSLAN),该网络(VSLAN)利用低级别的双线性汇集进行自我细分功能交互,并以折扣方式堆叠多个视频特征流。每个特征堆栈的学习属性都有助于我们所提出的多样性编码模块,然后是解码查询阶段,以便于结束到最终的不同和自然标题,而没有任何明确的属性监督。我们在语法和多样性方面评估MSVD和MSR-VTT数据集的VSLAN。 VSLAN的苹果酒得分优于当前的现成方法,分别在MSVD和MSR-VTT上的$ 4.5 \%$ 4.8 \%$。在同一数据集上,VSLAN在标题分集度量中实现了竞争力。
translated by 谷歌翻译
Brac大学(Bracu)参与了大学罗佛挑战(URC),这是由Mars社会组织的大学级学生的机器人竞赛,以设计和建造一个将用于火星早期探险家的流动站。Bracu已经设计和开发了一个全功能的下一代火星罗孚,蒙古托伊,可以在星球火星的极端敌对状态下运行。不仅拥有自主和手动控制功能的蒙古Tori,它还能够进行科学任务,以确定火星环境中的土壤和风化的特点。
translated by 谷歌翻译
Existing automated techniques for software documentation typically attempt to reason between two main sources of information: code and natural language. However, this reasoning process is often complicated by the lexical gap between more abstract natural language and more structured programming languages. One potential bridge for this gap is the Graphical User Interface (GUI), as GUIs inherently encode salient information about underlying program functionality into rich, pixel-based data representations. This paper offers one of the first comprehensive empirical investigations into the connection between GUIs and functional, natural language descriptions of software. First, we collect, analyze, and open source a large dataset of functional GUI descriptions consisting of 45,998 descriptions for 10,204 screenshots from popular Android applications. The descriptions were obtained from human labelers and underwent several quality control mechanisms. To gain insight into the representational potential of GUIs, we investigate the ability of four Neural Image Captioning models to predict natural language descriptions of varying granularity when provided a screenshot as input. We evaluate these models quantitatively, using common machine translation metrics, and qualitatively through a large-scale user study. Finally, we offer learned lessons and a discussion of the potential shown by multimodal models to enhance future techniques for automated software documentation.
translated by 谷歌翻译
In this paper, we reduce the complexity of approximating the correlation clustering problem from $O(m\times\left( 2+ \alpha (G) \right)+n)$ to $O(m+n)$ for any given value of $\varepsilon$ for a complete signed graph with $n$ vertices and $m$ positive edges where $\alpha(G)$ is the arboricity of the graph. Our approach gives the same output as the original algorithm and makes it possible to implement the algorithm in a full dynamic setting where edge sign flipping and vertex addition/removal are allowed. Constructing this index costs $O(m)$ memory and $O(m\times\alpha(G))$ time. We also studied the structural properties of the non-agreement measure used in the approximation algorithm. The theoretical results are accompanied by a full set of experiments concerning seven real-world graphs. These results shows superiority of our index-based algorithm to the non-index one by a decrease of %34 in time on average.
translated by 谷歌翻译
This paper proposes a novel self-supervised based Cut-and-Paste GAN to perform foreground object segmentation and generate realistic composite images without manual annotations. We accomplish this goal by a simple yet effective self-supervised approach coupled with the U-Net based discriminator. The proposed method extends the ability of the standard discriminators to learn not only the global data representations via classification (real/fake) but also learn semantic and structural information through pseudo labels created using the self-supervised task. The proposed method empowers the generator to create meaningful masks by forcing it to learn informative per-pixel as well as global image feedback from the discriminator. Our experiments demonstrate that our proposed method significantly outperforms the state-of-the-art methods on the standard benchmark datasets.
translated by 谷歌翻译
Machine learning models are typically evaluated by computing similarity with reference annotations and trained by maximizing similarity with such. Especially in the bio-medical domain, annotations are subjective and suffer from low inter- and intra-rater reliability. Since annotations only reflect the annotation entity's interpretation of the real world, this can lead to sub-optimal predictions even though the model achieves high similarity scores. Here, the theoretical concept of Peak Ground Truth (PGT) is introduced. PGT marks the point beyond which an increase in similarity with the reference annotation stops translating to better Real World Model Performance (RWMP). Additionally, a quantitative technique to approximate PGT by computing inter- and intra-rater reliability is proposed. Finally, three categories of PGT-aware strategies to evaluate and improve model performance are reviewed.
translated by 谷歌翻译
Finding and localizing the conceptual changes in two scenes in terms of the presence or removal of objects in two images belonging to the same scene at different times in special care applications is of great significance. This is mainly due to the fact that addition or removal of important objects for some environments can be harmful. As a result, there is a need to design a program that locates these differences using machine vision. The most important challenge of this problem is the change in lighting conditions and the presence of shadows in the scene. Therefore, the proposed methods must be resistant to these challenges. In this article, a method based on deep convolutional neural networks using transfer learning is introduced, which is trained with an intelligent data synthesis process. The results of this method are tested and presented on the dataset provided for this purpose. It is shown that the presented method is more efficient than other methods and can be used in a variety of real industrial environments.
translated by 谷歌翻译
Simulation-based falsification is a practical testing method to increase confidence that the system will meet safety requirements. Because full-fidelity simulations can be computationally demanding, we investigate the use of simulators with different levels of fidelity. As a first step, we express the overall safety specification in terms of environmental parameters and structure this safety specification as an optimization problem. We propose a multi-fidelity falsification framework using Bayesian optimization, which is able to determine at which level of fidelity we should conduct a safety evaluation in addition to finding possible instances from the environment that cause the system to fail. This method allows us to automatically switch between inexpensive, inaccurate information from a low-fidelity simulator and expensive, accurate information from a high-fidelity simulator in a cost-effective way. Our experiments on various environments in simulation demonstrate that multi-fidelity Bayesian optimization has falsification performance comparable to single-fidelity Bayesian optimization but with much lower cost.
translated by 谷歌翻译
Ensemble learning combines results from multiple machine learning models in order to provide a better and optimised predictive model with reduced bias, variance and improved predictions. However, in federated learning it is not feasible to apply centralised ensemble learning directly due to privacy concerns. Hence, a mechanism is required to combine results of local models to produce a global model. Most distributed consensus algorithms, such as Byzantine fault tolerance (BFT), do not normally perform well in such applications. This is because, in such methods predictions of some of the peers are disregarded, so a majority of peers can win without even considering other peers' decisions. Additionally, the confidence score of the result of each peer is not normally taken into account, although it is an important feature to consider for ensemble learning. Moreover, the problem of a tie event is often left un-addressed by methods such as BFT. To fill these research gaps, we propose PoSw (Proof of Swarm), a novel distributed consensus algorithm for ensemble learning in a federated setting, which was inspired by particle swarm based algorithms for solving optimisation problems. The proposed algorithm is theoretically proved to always converge in a relatively small number of steps and has mechanisms to resolve tie events while trying to achieve sub-optimum solutions. We experimentally validated the performance of the proposed algorithm using ECG classification as an example application in healthcare, showing that the ensemble learning model outperformed all local models and even the FL-based global model. To the best of our knowledge, the proposed algorithm is the first attempt to make consensus over the output results of distributed models trained using federated learning.
translated by 谷歌翻译